Issues and Techniques for
Anonymizing Network Traces

Vern Paxson Ruoming Pang
ICSI/LBNL Princeton University

vern@icir.org/rpang@cs.princeton.edu

September 27, 2005



Impact of Anonymization on
Research

» Major issue for soundly evaluating
defense mechanisms: what sort of
collateral damage do they incur?

= Requires “realistic” background traffic

* |n addition, the problem of “Crud”
— Real traffic is riddled with idiosyncratic/broken
activity
« Some of this still doable w/ anon. data
» Invaluable to have a ground truth oracle
» And/or: meta-data



Impact of Lack of Traffic Contents
on Research

Much intrusion detection research requires
packet contents

Major intrusion detection research pitfall:
failure to realistically assess false positives,
particularly in how they scale to large networks

— Especially for anomaly detection

Lack of traffic contents increasingly worrisome
as semantic level of attacks rises

How can we leverage the need to know
“what’s being said” but not “who is saying it"?




Fundamental Tension

» Research utility of traces diminishes as
information is removed

» Especially matters for traces used as
background traffic

* Question becomes: what are the
threats, the data contributor’'s threat
model, and the technology available for
achieving the policy that incorporates
these



Sensitive Information to Protect

What does the infrastructure look like?
How much talking is going on”?

Who is talking to whom?

What are they saying?

(The medical information disclosure viewpoint):
— ldentities
— Confidential attributes



What Does the Infrastructure
Look Like?

Topology? Capacities? Hardware
specifics? Future plans?

Topology, capacities somewhat externally
measurable. Others, only under NDA.

Anonymize by constructing abstractions
that the provider signs off on.

If these abstractions are “good”, that works




How Much Talking is Going On?

» E.g., # customers, volume of traffic,
how many web server hits

 Commercially sensitive

* Anonymized by expressing in purely
relative terms
— E.qg., hourly fluctuation

* This is not broadly useful




Who is Talking to Whom?

Usual approach: via 1-to-1 mapping of
actual IDs to synthetic IDs

Can be fully opague or can partially
preserve relationships, e.g.,

inside/outside, CIDR classes, tcpdpriv
-A50 (et al)

Very common technique

1 inference attacks that leverage structure




What Are They Saying?

* Far and away most common answer: You
Don’t Get To Know

— l.e., communication semantics completely
stripped

* Or, if not, syntactic garbling: e.g., sSIPASS
FIPASS XXX/

= Can make inappropriate transformations
= Unsound if done on a per-packet basis




Attacks on Anonymization

* Inference attacks:
—Fingerprinting via public/guessed info
* E.g., file size/date = identity of file

* E.g., software version, config = which
server

» E.g., HTTP item size = which item [*]




Attacks on Anonymization

Dictionary attacks:

— If known hash/scrambling function, cram zillions
of candidates through it (or guess)

Or: seed trace with known text
— Look for its mapping, search for collisions

E.g., insert "RETR alice’ to find
“USER alice’

Counter-tactic: separate hamespaces
— E.g. Hash(file, server-ip, complete-path)




Attacks on Anonymization

o Structural attacks:

— Consider a site trace w/ complete (but 1-to-1)
rewriting of IP addresses

— If from a typical site, then riddled with sequential
scans

— E.g., for an arbitrary day at LBNL.:
* Look for sequential scans of >= 10K addrs.
« Find them from 59 different remote hosts
=> Can completely undo any 1—1 scrambling

— Combat via N = 1 scrambling
— Or: identify scanners and remove them




Anonymization Tools

* Tcpdpriv, Tcpurify: strips transport
payloads, rewrites addresses/ports to
specified degree; noteworthy for “prefix-
preserving” address rewrite mode

* |[psumdump: extracts given fields from
tcpdump trace, prints as ASCI|

e Bro: trace transformation mode allows
semantic rewriting of payloads




tcpmkpub

Programmable/customizable trace anonymization
Forces header field-by-field examination, opt-in

Supports complex address transformation, crud retention,
meta-data

Template driven, e.q:

FIELD (TCP_SRCPORT, 2, KEEP)

FIELD (TCP_DSTPORT, 2, KEEP)

FIELD (TCP_SEQ, 4, KEEP)

FIELD (TCP_ACK, 4, KEEP)

FIELD (TCP_OFF, 1, KEEP)

FIELD (TCP_FLAGS, 1, KEEP)

FIELD (TCP_WINDOW, 2, KEEP)

PUTOFF_ FIELD (TCP_CHKSUM, 2, ZERO)

FIELD (TCP_URGPTR, 2, KEEP)

FIELD (TCP_OPTIONS, VARLEN, anonymize tcp options)
PICKUP_FIELD (TCP_CHKSUM, 0, recompute tcp checksum)

FIELD (TCP_DATA, RESTLEN, SKIP)



The Verification Problem

 How do we know that an anonymized trace is
“safe”?

* Per [Pang/Paxson 2003]:

— Use filter-in rather than filter-out

— Anonymized trace only includes elements
explicitly allowed

— Fail-safe/conservative (white-lists, not black-lists)
— But: find that manual inspection needed in order
for trace to include “crud”

« Research on tools & principles needed



PREDICT-Specific Issues

Researcher needs
— Retain as much trace richness as possible

Legal issues
— Liability for what's exposed in datasets

Perception issues

— Danger for public misinterpretation of “DHS is
gathering personal information”

Threat model

— PREDICT's vetting of repository users should
help ease some data provider concerns



