
Tool Output Integration
Framework (TOIF)

Data Access Technologies
Ed Seidewitz

KDM Analytics
Dr. Nikolai Mansourov

SBIR topic: Software Testing and Vulnerability Analysis

© KDM Analytics & Data Access
Technologies

2

• Problem
– Effective and systematic measurement of the risks posed by software

vulnerabilities

• Challenge
– One of the key challenges is that analysis solution consists of multiple

tools, information sources and services that are currently fragmented
lacking intuitive and efficient integration due to
• Inconsistency in the nomenclature of reported vulnerabilities caused by

ambiguity of vulnerability definitions – inconsistency in interpretation of
Common Weakness Enumeration (CWE) instances

• Lack of agreement on what are the parts of vulnerability to report – what
constitutes vulnerability report

• Lack of interoperability that is based on common definition of system
artifacts

Moving toward Solution:
The Tools’ Output Integration Framework (TOIF):

• Creating bases for composite vulnerability analysis tools on top of
existing off-the-shelf vulnerability detection tools

– E.g. Applied Visions

• Improving the breadth and accuracy of vulnerability analysis

• Improving the rigor of assessments by bringing vulnerability detection
into architecture context

• Normalizing vulnerability reporting protocols

• Leveraging OMG Software Assurance Ecosystem standards, Software
Fault Patterns (SFPs) and CWEs

Delivering
• open source product:

• analyzer and run time framework for integrating findings of vulnerability
detection tools

• integration of 5 existing open source tools

• framework integration of proprietary tools in area of architecture and risk analysis to

show greater value when viewing CWEs within the architecture and risk content

3
© KDM Analytics & Data Access

Technologies

TOIF Architecture
Co

de

Vulnerability detection tools

Knowledge mining tools

TO
IF

 a
da

pt
er

s
(n

or
m

al
iz

at
io

n)

CPPcheck

FindBugs

JLint

RATS

Splint

Proprietary tool
for

architecture
analysis

Standard
protocol

KDM
Analytics

Fa
ct

 O
ri

en
te

d
In

te
rf

ac
e

File Location Description Name

Finding

Statement Tool CWE id Weight Weakness
Description

Data
Element

KDM XMI

KDM XMI

TOIF XMI

Bu
ild

 e
nv

iro
nm

en
t

4
© KDM Analytics & Data Access

Technologies

The Tools’ Output Integration Framework
Fact-oriented integration

• Capability to integrate multiple vulnerability detection tools as “data
feeds” into the repository

– Based on a common protocol for exchanging vulnerability findings

– Achieved through normalizing vocabularies across multiple tools
• Capability to collate findings from several tools
• Capability to put vulnerability findings into the context of other facts

about the system (such as metrics, architecture, design patterns, etc.)
– Based on existing standard protocol for exchanging system facts, the OMG

Knowledge Discovery Metamodel (KDM),

– now ISO/IEC 19506

• As the result: single integrated repository of high-fidelity facts about a
software system

5
© KDM Analytics & Data Access

Technologies

Semantic integration focuses on facts

© KDM Analytics & Data Access
Technologies

6

C
od

e

Vulnerability detection tools

TO
IF

 a
da

pt
er

s
(n

or
m

al
iz

at
io

n)

CPPcheck

FindBugs

JLint

RATS

Splint

TOIF XMI

B
ui

ld
 e

nv
iro

nm
en

t
• Finding
• Code Location
• File
• Line Number
• Name
• Directory
• CWE id
• SFP id
• Fault Cluster id
• Statement
• Data Element

• Finding references Code Location
• Finding has CWE id
• Code Location references File
• Code Location references Line Number
• File has Name
• Finding involves Statement

Example: Wireshark

7
© KDM Analytics & Data Access

Technologies

• Statistics
• Wireshark ~ 2MLOC
• Total files analyzed: 1519
• Run 3 open source tools: cppcheck, splint and RATS- number of findings:

18949
• Cppcheck reported 7051 issues
• Splint reported 10917 issues
• RATS reported 981 issues

• How to make sense out of it?

• Identify overlaps and unique findings
• Focus on the findings that matter
• Prioritizing findings

Example of findings

8

Source:
1150 fputs(“%% the page title\n”, output->fh);
1151 ps_clean_string(psbuffer, filename, MAX_PS_LINE_LENGTH);
1152 fprintf(output->fh, “/ws pagetitle (%s – Wireshark “
 VERSION “%s) def \n”,
 psbuffer, wireshark_svnversion);
1153 fputs(“\n”, output->fh);

RATS report on line # 1152:
“Check to make sure that the non-constant format string passed as argument 2 to this
function call does not come from an untrusted source.“

SPLINT report on line # 1152 :
“Format argument 1 to fprintf (%s) expects char * gets
unsigned char [256]: psbuffer“

SFP-24; CWE-134

SFP-1; CWE-681

SFP-24; CWE-134

SFP-1; CWE-681

Same line number, different weakness

© KDM Analytics & Data Access
Technologies

9
© KDM Analytics & Data Access

Technologies

10
© KDM Analytics & Data Access

Technologies

Findings in the Context of Architecture

Issues found

Consider the following:
• architecture component where issue is identified
• distance from injury (based on SFP description)
• distance from entry point into system

11
© KDM Analytics & Data Access

Technologies

12
© KDM Analytics & Data Access

Technologies

Potential Benefits

• Integration of existing vulnerability detection tools and cross-
correlation of their findings with architectural risk analysis is
important for software assurance

• Powerful open source vulnerability detection platform

• Reference implementation for standard-based adaptors
– Blue print how to integrate additional analyzers

• Adoption of standard-based reporting of vulnerabilities

• Utilization of open source development to advance the SwA space

13
© KDM Analytics & Data Access

Technologies

Technology transition

© KDM Analytics & Data Access
Technologies

14

• Commercialization through open source
– Integrate selected open source vulnerability detection tools
– Open source KDM extraction tools

• TOI Framework protocol (TOIF XMI) is easy to adopt by tool
vendors

• Deliverables:
– a ready-to-use open source composite vulnerability analyzer

integrating 5 existing open source vulnerability detection tools
– integrating proprietary architecture analysis tool
– a protocol for exchanging vulnerability findings
– blueprints for adaptors of the protocol
– practical usability and accuracy data based on the case study

	Tool Output Integration Framework (TOIF)
	SBIR topic: Software Testing and Vulnerability Analysis
	Moving toward Solution:�The Tools’ Output Integration Framework (TOIF):
	TOIF Architecture
	The Tools’ Output Integration Framework �Fact-oriented integration
	Semantic integration focuses on facts
	Example: Wireshark
	Example of findings
	Slide Number 9
	Slide Number 10
	Findings in the Context of Architecture
	Slide Number 12
	Potential Benefits
	Technology transition

