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SBIR topic: Software Testing and Vulnerability Analysis  
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• Problem 
– Effective and systematic measurement of the risks posed by software 

vulnerabilities 
 

• Challenge 
– One of the key challenges is that analysis solution consists of multiple 

tools, information sources and services that are currently fragmented 
lacking intuitive and efficient integration due to 
• Inconsistency in the nomenclature of reported vulnerabilities caused by 

ambiguity of vulnerability definitions – inconsistency in interpretation of 
Common Weakness Enumeration (CWE) instances 

• Lack of agreement on what are the parts of vulnerability to report – what 
constitutes vulnerability report 

• Lack of interoperability that is based on common definition of system 
artifacts  



Moving toward Solution: 
The Tools’ Output Integration Framework (TOIF): 

• Creating bases for composite vulnerability analysis tools on top of 
existing off-the-shelf vulnerability detection tools 

– E.g. Applied Visions 

• Improving the breadth and accuracy of vulnerability analysis 

• Improving the rigor of assessments by bringing vulnerability detection 
into architecture context 

• Normalizing vulnerability reporting protocols 

• Leveraging OMG Software Assurance Ecosystem standards, Software 
Fault Patterns (SFPs) and CWEs 

Delivering 
• open source product:  

• analyzer and run time framework for integrating findings of vulnerability 
detection tools  

• integration of 5 existing open source tools 
 
• framework integration of proprietary tools in area of architecture and risk analysis to 

show greater value when viewing CWEs within the architecture and risk content  
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The Tools’ Output Integration Framework  
Fact-oriented integration 

• Capability to integrate multiple vulnerability detection tools as “data 
feeds” into the repository 

– Based on a common protocol for exchanging vulnerability findings 

– Achieved through normalizing vocabularies across multiple tools 
• Capability to collate findings from several tools 
• Capability to put vulnerability findings into the context of other facts 

about the system (such as metrics, architecture, design patterns, etc.) 
– Based on existing standard protocol for exchanging system facts, the OMG 

Knowledge Discovery Metamodel (KDM),  

– now ISO/IEC 19506 
 

• As the result: single integrated repository of high-fidelity facts about a 
software system 
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Semantic integration focuses on facts 
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• Finding 
• Code Location 
• File 
• Line Number 
• Name 
• Directory 
• CWE id 
• SFP id 
• Fault Cluster id 
• Statement 
• Data Element 
 

• Finding references Code Location 
• Finding has CWE id 
• Code Location references File 
• Code Location references Line Number 
• File has Name 
• Finding involves Statement 
 



Example: Wireshark 
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• Statistics 
• Wireshark ~ 2MLOC 
• Total files analyzed:  1519 
• Run 3 open source tools: cppcheck, splint and RATS-  number of findings: 

18949 
• Cppcheck reported 7051 issues 
• Splint reported 10917 issues 
• RATS reported 981 issues 

 
• How to make sense out of it? 

• Identify overlaps and unique findings  
• Focus on the findings that matter 
• Prioritizing findings 



Example of findings 
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Source: 
1150 fputs(“%% the page title\n”, output->fh); 
1151 ps_clean_string(psbuffer, filename, MAX_PS_LINE_LENGTH); 
1152           fprintf(output->fh, “/ws pagetitle (%s – Wireshark “ 
                                                VERSION  “%s) def \n”,   
                                                 psbuffer, wireshark_svnversion);   
1153 fputs(“\n”, output->fh); 

RATS report on line # 1152: 
“Check to make sure that the non-constant format string passed as argument 2 to this 
function call does not come from an untrusted source.“ 

SPLINT report on line # 1152 : 
“Format argument 1 to fprintf (%s) expects char * gets  
unsigned char [256]: psbuffer“ 

SFP-24; CWE-134 

SFP-1; CWE-681 

SFP-24; CWE-134 

SFP-1; CWE-681 

Same line number, different weakness 
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Findings in the Context of Architecture 

Issues found 

Consider the following: 
• architecture component where issue is identified 
• distance from injury  (based on SFP description) 
• distance from entry point into system 
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Potential Benefits 

• Integration of existing vulnerability detection tools and cross-
correlation of their findings with architectural risk analysis is 
important for software assurance 
 

• Powerful open source vulnerability detection platform 
 

• Reference implementation for standard-based adaptors 
– Blue print how to integrate additional analyzers 

 

• Adoption of standard-based reporting of vulnerabilities 

 

• Utilization of open source development to advance the SwA space 
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Technology transition 
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• Commercialization through open source 
– Integrate selected open source vulnerability detection tools 
– Open source KDM extraction tools 

• TOI Framework protocol (TOIF XMI) is easy to adopt by tool 
vendors 

• Deliverables: 
– a ready-to-use open source composite vulnerability analyzer 

integrating 5 existing open source vulnerability detection tools 
– integrating proprietary architecture analysis tool 
– a protocol for exchanging vulnerability findings 
– blueprints for adaptors of the protocol 
– practical usability and accuracy data based on the case study 
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