
Gold Standard Method for Benchmarking C
Source Code Static Analysis Tools

Cyber Security Division
2012 Principal Investigators’ Meeting

October 11, 2012

Henny Sipma
Sr. Computer Scientist
Kestrel Technology, LLC
sipma@kestreltechnology.com
(650) 320 8474

mailto:sipma@kestreltechnology.com

Kestrel Technology

2

Core activity: Sound static analysis (mathematical proof of safety)

Tool: CodeHawk

Languages supported: C, Java, x86 executables

Underlying technology: Abstract interpretation (Cousot,Cousot, 1977)

Properties

C:
Language-level properties: memory safety, null-dereference
(application-independent, mathematically well-defined properties)
CWEs: 119-127,129,131,242,252,391,466-469,476,682,786-788,805,806,824,839

Java: Taint analysis, loop-bound analysis (CWE606), integer overflow (CWE190/191)

X86: Memory safety, information extraction

Founded: 2000

Location: Palo Alto, CA

abstract
interpretation engine

Iterators

Abstract domains:

constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

sound abstraction from
Java byte code into CHIF

Java byte code front end

CIL

sound abstraction from

preprocessed CIL code into
CHIF

C source code front end

disassembly
abstraction from x86 binary

code into CHIF

x86 binary front end

.class
.jar
.war

.c

.exe

Our Tool: CodeHawk

•4

Proving safety of C programs

Starting point: Mathematically well-defined properties
Proving absence of:
CWEs: 119-127,129,131,242,252,391,466-469,476,682,786-788,805,806,824,839

Create proof obligations
Safety conditions that state that the property holds at every relevant location in the program

Generate invariants
Assertions at all locations that are true for all inputs for all program executions

Discharge proof obligations
Location is safe from targeted vulnerabilities if invariants generated imply the safety conditions

•5

Proving safety of C programs: feasible?

Not automatic: undecidable problem
Not easy:

Klein et al., Sel4: Formal Verification of an OS Kernel, SOSP 2009
Program size: 8700 lines of C, 600 lines of assembly code
Proof effort : 11 person-years

Our own experience with CodeHawk:

1100 small test programs (SAMATE): fully automatic, a few minutes

Larger benchmark programs (up to 1200 LOC):
 full verification: 1-2 person-weeks

Real-world applications (up to 100,000 LOC):
 55-67% of proof obligations discharged automatically (~5 mins)

•6

Proving safety of C programs: our proposal
(TTA #1: Software Assurance)

Perform a full verification of 6 real-world C applications
- ranging in size from 50,000 – 200,000 LOC,
- for CWEs 119, 120,121, 122, 123, 124, 125, 126, 127, 129, 131, 134,

170, 242, 252, 391, 415, 416, 457, 466, 467, 468, 469, 476, 682, 786,
787, 788, 805, 806, 824 ,839

Ambitious?

Interesting Research?

Immediate Operational Capability
Yes, a very important one,
but first a brief interlude on the current static analysis landscape

Static Analysis Landscape: Bug-finders

•7

Current Reality:

Bug-finders are the first line of defense against software vulnerabilities

(but how effective are these bug-finders?)

Two important terms:

False positive: bug report that turns out not to be a bug

False negative: bug that is not reported

Makes software developers and managers very unhappy

Invisible, until exploited

Static Analysis Landscape: Bug-finders

•8

False positive: bug report that turns out not to be a bug
Makes software developers and managers very unhappy

Naturally, software developers heavily favor bug-finders with
low false-positive rate

Reality:

Low false positive rate is very easy to obtain for a bug-finder:

Only report a bug if it is 99% likely to be a bug otherwise keep quiet

Very high false negative rate (but that’s invisible to the developer)

•9

The problem: Evaluating bug-finders

Tool A Tool B

The hated false positives

The invisible false negatives

•10

The problem: Evaluating bug-finders

Tool A Tool B

The hated false positives

Developer will choose Tool A

Tool Vendor B is forced to lower its false positive rate (and the
only cost-effective way to do so, is to increase false negatives) to
stay in business

Strong economic incentive for tools that provide less assurance

Society suffers

•11

The problem: Evaluating bug-finders

Tool A Tool B

Maybe dealing with the extra false
positives can be justified by knowing that
a much higher level of assurance is
achieved

Make these false negatives visible !

Give Tool B due credit for its low false
negative rate

Evaluating Bug-finders

•12

Problem has long been recognized by NIST: Dr. Paul Black

SATE competition: (real-world programs)

2008: Nagios, Lighttpd, Naim
2009: Irssi, Pvm
2010: Dovecot, ….
2011: ….

SAMATE (1163 test cases by MIT/Lincoln Labs), 2005
Juliet Test Suite v1.0 (45,324 test cases), Dec 2010
Juliet Test Suite v1.0 (57,099 test cases), Sep 2012

Small synthetic benchmarks

SATE competition: participation

•13

Evaluating Bug-finders

•14

Problem has long been recognized by NIST: Dr. Paul Black

SATE competition: (real-world programs)

2008: Nagios, Lighttpd, Naim
2009: Irssi, Pvm
2010: Dovecot, ….
2011: ….

Measuring false positives
and false negatives

SAMATE (1163 test cases by MIT/Lincoln Labs), 2005
Juliet Test Suite v1.0 (45,324 test cases), Dec 2010
Juliet Test Suite v1.0 (57,099 test cases), Sep 2012

Small synthetic benchmarks

Evaluating Bug-finders

•15

Problem has long been recognized by NIST: Dr. Paul Black

SAMATE (1163 test cases by MIT/Lincoln Labs), 2005
Juliet Test Suite v1.0 (45,324 test cases), Dec 2010
Juliet Test Suite v1.0 (57,099 test cases), Sep 2012

SATE competition: (real-world programs)

2008: Nagios, Lighttpd, Naim
2009: Irssi, Pvm
2010: Dovecot, ….
2011: ….

Measuring false positives
and false negatives

Small synthetic benchmarks

Gold standard + measurement tool

Tasks

•16

1. Definition of metrics (02/13)
Redefine false positive rate / false negative rate relative to ground truth

Preliminary results for proving memory safety (2010)

3. Increase level of proof obligations proven automatically to > 80% (06/14)
Increase precision by improved pointer analysis, limited shape analysis, and
higher degree of context sensitivity

2. Develop analysis support for CWEs 457, 415/416, 170, and 134 (11/13)
Uninitialized variables, use-after-free, double-free, improper null-termination,
uncontrolled format string

Tasks (cont’d)

•17

4. Specialize the analyzer for the six applications to achieve 100% (06/14)
E.g. introduce application-specific data structure invariants, environment assumptions

6. Apply measurement tool to published results and SWAMP tools (08/14)

5. Develop measurement tool (08/14)

Static
Analysis tool

results

Evaluate
results

Ground
truth

report

Application-type-specific
strengths and weaknesses
of bug-finder tool evaluated

Technology Transfer

•18

Commercialization

 Software assurance centers (Lockheed Martin, GE, ….)
 Static analysis tool developers
 Developers of high-security software
 Evaluation kit, available Q1 2013

Government customers

 NIST
 Provide prototype to NIST, early 2013
 Incorporate feedback from NIST, throughout the program
 Provide support for future SATE competitions

 Interested in other collaborations

Contribution to SWAMP

•19

Evaluate tools for
false positives and
false negatives on

benchmark
programs

Operational Capability

•20

Tool X

Tool Z

Tool Y Measurement tool:
Provide advice which
tool, or combination of
tools is best suitable
for each application
area

Better assessment of vulnerabilities in critical cyber infrastructure

Benefits to society

•21

Create bigger market opportunity for high-quality
static analysis tool vendors by enabling

differentiating on false negatives

Let the market do its work

To create higher and
higher levels of

software assurance

Gold Standard Method for Benchmarking C Source Code Static Analysis Tools
Kestrel Technology, LLC, TTA-01-0012-1

•22

Proposed Technical Approach

Goal: Provide “Gold Standard” benchmarking method for
SWAMP-resident static analysis tools
Tasks:
• Define metrics as basis for measurement
• Develop analysis support for CWEs 134,415/6,457,170)
• Increase percentage of safety conditions proven automatically
• Full reference analysis of 6 NIST SATE benchmark applications
• Develop scoring tool to compare tool results to reference
Current status of proposed technology:
• Working prototype C analyzer based on abstract

interpretation that automatically proves 55-67% of memory
safety conditions for NIST benchmark applications

Operational Capability

Quantitative performance targets:
• Complete metrics definition for all targeted CWEs
• Increase percentage automation of proof to 80%
• 100% analysis of 6 NIST SATE applications for targeted CWEs
Cost of ownership: all deliverables provided under research
contract with no additional cost
Benefits to DHS and society at large
• Allows measurement of false negatives of bug-finding tools
• Allows DHS to more accurately assess vulnerability exposure
• Feedback aids developers of bug-finders to improve their tools
• Advances the state of the art in scalable sound static analysis

Schedule and Milestones: 24 months period of performance
 6: Definition of metrics
15: Analysis coverage for CWEs 457, 415/6, 134, 170
22: 80% level of automation on NIST benchmarks
22: 100% analysis of NIST benchmarks
24: Measurement tool, evaluation of SATE participants’ tools

Deliverables:
• Gold Standard Analysis of NIST benchmarks
• Measurement tool to compare SWAMP results with reference
• Tool (as executable) with government rights
Corporate Contact: Doug Smith, smith@kestreltechnology.com
3260 Hillview Ave, Palo Alto, CA 94304, (650) 320 8474

SATE
results

Evaluate
Ground

truth
report

Create market opportunity for high-
quality software and high-quality tools

Let market increase
software assurance levels

mailto:smith@kestreltechnology.com

	Slide Number 1
	Kestrel Technology
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Static Analysis Landscape: Bug-finders
	Static Analysis Landscape: Bug-finders
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Evaluating Bug-finders
	SATE competition: participation
	Evaluating Bug-finders
	Evaluating Bug-finders
	Tasks
	Tasks (cont’d)
	Technology Transfer
	Contribution to SWAMP
	Operational Capability
	Benefits to society
	Gold Standard Method for Benchmarking C Source Code Static Analysis Tools�Kestrel Technology, LLC, TTA-01-0012-1

