
© 2012, HRL Laboratories, LLC All rights reserved.

Tunable Information Flow

Cyber Security Division
2012 Principal Investigators’ Meeting

Thursday, October 11, 2012

George Kuan
Member of Research Staff
HRL Laboratories
gkuan@hrl.com
(310) 317-5489

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
Department of Homeland Security, Air Force Research Laboratory or the U.S. Government.

This material is based on research sponsored by the Department of Homeland Security (DHS)
Science and Technology Directorate, Cyber Security Division (DHS S&T/CSD), BAA 11-02 and Air
Force Research Laboratory Information Directorate via contract number FA8750-12-C-0236 .

mailto:gkuan@hrl.com

© 2012, HRL Laboratories, LLC All rights reserved.

Tunable Information Flow: Introduction

TTA1: Software Assurance
HRL Laboratories, LLC

George Kuan (PI) Aleksey Nogin

• Formerly Hughes Research Laboratories (est. 1948)
• Formed as a Limited Liability Company (LLC) , 1997
• R&D for The Boeing Company and General Motors
• Government and commercial contracts
• AS9100 accredited / DoD Trusted Foundry
• 250,000 square feet of lab space
• 10,000-square-foot Class 10 clean room
• Located on 72 acres in Malibu, CA

Stevens Institute of Technology
David Naumann

http://www.hrl.com/hrlDocs/pressreleases/2011/prsRls_111117.html

© 2012, HRL Laboratories, LLC All rights reserved.

User Developer

Traditional Program Verification

Developer: Here’s a
program. I guarantee it
won’t crash or leak data.

User: That’s nice.
Why should I believe you?

Lessons Learned

Proofs are useless
if the claims are irrelevant.
What are the “right” claims?

Developer’s Proof: The program won’t crash*
because program path 1 which is taken immediately
after startup for machine X terminates immediately.
* Only if you run on machine X which always triggers program path 1.

Developer: Here’s an
incontrovertible proof of my
claims. Check it yourself.

 Proving the right claims is difficult.
(11 p-y for <10kloc [Klein et al ‘09])

 I can’t provide different proofs for
each customer. (Can’t even agree
on bug reports [Hooijmeijer ‘07])

 Did I read and understand the
claims?

 Do the claims matter or apply
to me?

© 2012, HRL Laboratories, LLC All rights reserved.

4

Tunable Information Flow

For any of user’s requirements that he can’t prove,
he adds runtime monitoring to enforce those requirements
at runtime. The profiles from User’s subsequent runs of
the program can help him refine his security policy.

User Developer

Developer: Here’s a
program. I guarantee it
won’t crash or leak data.

User: That doesn’t work for me. I run
machine Y. I have my own security
policy (tunable). Please give me the
proof artifacts so I can verify that.

Developer: Here’s an
incontrovertible proof of my
claims. Check it yourself.

User: That’s nice.
Why should I believe you?

Developer: Here you go.

© 2012, HRL Laboratories, LLC All rights reserved.

Applications

 Security of low-level code
 Web Browser Infrastructure

 Infrastructure software updates and dynamic software

updates
 Distributed systems such as surveillance sensor networks

and First Responder Incident Management Systems
 Many software security properties are information flow

properties (c.f. CWE, OWASP, and TrustWave Global
Security Report).
 Environmental vulnerabilities/configuration
 Code injection
 Reliance on untrusted inputs
 Confidentiality violation

© 2012, HRL Laboratories, LLC All rights reserved.

Developer tests
software S in
environments
E0 and E1

Developer
implements
software S
and proves that
it satisfies policy
PD

Use Scenarios

S, policy
PD, and
proof

Policy Refinement
& Runtime Profiles

S in operation

S in operation

Organization A generates
a custom SA (i.e., S with
runtime checks) that
verifiably satisfies custom
policy PA in environment EA

Organization B
generates SB
Satisfying
custom policy
PB in
environment EB

Policy Refinement
& Runtime Profiles

Bug Reports

© 2012, HRL Laboratories, LLC All rights reserved.

Technical Challenges (1):
Static Verification

 Concept: The proof-carrying code (PCC) framework [Necula & Lee ‘96] enables the code
execution site to verify program properties (traditionally, memory safety). Extend PCC to
info flow properties and two-stage verification.

 Benefits:
 Highly expressive framework for encoding properties
 Can help enable information flow-preserving compilation

 Technical Challenges:
 Proofs get too large and only encode a single immutable set of properties and

associated proofs.
 Static-only techniques result in excessive false positive rate (>80%). Goal <20%.

 Tunability: Instead of relying on the developer to possess the perfect policy for all users,
each user is able to adapt a policy to unique needs and environment.

Source
Code

User’s
Policy

Compiler with
Verification
Condition Generator

Developer’s
Policy

Proof Verifier Code with Invariants

© 2012, HRL Laboratories, LLC All rights reserved.

Code with
Invariants
from front-
end

Technical Challenges (2):
Inlined Runtime Monitoring

 Concept:
Hybrid static-dynamic flow-sensitive runtime monitoring of information flow properties via a
syntax-directed transformation that inlines a monitor into the subject program

 Key Benefits:
 Portable across virtual machines and just-in-time compilers
 Takes advantage of optimizations such as constant folding

 Technical Challenges: Runtime monitoring-only techniques result in considerable overhead
(3.6x). We mitigate this by eliminating the need for runtime monitoring of properties that can
be proven statically (goal <2x).

 Tunability:
 The ability to fall back on runtime monitoring enables a broader set of provable

properties for the front-end.
 Utilizing profile and testing information, the system can further tailor policies to suit

operational requirements.

Monitor Inlining
Transform

Concolic
Testing

Executable with
Runtime
Monitoring and
Profiling Support

© 2012, HRL Laboratories, LLC All rights reserved.

Schedule

9

Milestone Standalone
Release
and Perf. Analysis

Integrated &
Optimizing Release
and Perf. Analysis

Info Flow Compiler: Compiler for info flow analysis of
source based on developer policy generating
verification conditions

(1) 2/2013
(2) 4/2013

(7) 8/2014
(8) 11/2015

Proof Checker: Tool for verifying low-level code with
invariants against user policy

(3) 7/2013
(4) 10/2013

(9) 2/2015
(10) 5/2015

Runtime Monitoring Inliner: Tool for inlining profiling
monitors into code with invariants

(5) 12/2014
(6) 2/2014

(11) 6/2015
(12) 8/2015

Technology Demonstration: Performance evaluation
on open source programs

8/2015

© 2012, HRL Laboratories, LLC All rights reserved.

Technology Transition Plan

10

 Build information flow analysis compiler infrastructure on top of
LLVM (one of the two dominant open-source compiler backend
frameworks)

 Build proof checker (verifier) and runtime monitor inliner
tailored to the tunable information flow and LLVM framework

 Port open source software (including DETER-hosted software
where applicable) to information flow compiler format for
testing and benchmarking

© 2012, HRL Laboratories, LLC All rights reserved.

Proof-
carrying

code

Schedule, Deliverables, & Contact Info:

Deliverables: Prototype Information Flow Analysis Compiler, Proof
Checking, and Runtime Monitoring Tools

Corporate Information: HRL Laboratories
Dr. George Kuan, 3011 Malibu Canyon Road, Malibu, CA 90625
Tel.: (310) 317-5489 Email: gkuan@hrl.com

BAA Number: Cyber Security BAA 11-02

Title: Tunable Information Flow
Combining Static Checking and Verification with Dynamic Analysis for Information Flow

HRL Laboratories, LLC

Proposed Technical Approach:
1. How proposed research meets and exceeds goals:

• Information flow analysis detects violations at compile-time, yet the
checker ensures that the code consumer can fine-tune a security
policy which is checked before runtime

• At runtime, the system only monitors code paths that the static
phases could not guarantee to be secure, thus optimizing
performance while ensuring precision of runtime monitoring

• Static analysis generates tests that cover potential security flaws
2. Applied Research: Devise compatible analysis, code/proof checking,

and runtime monitoring algorithms
3. Development: Implement and benchmark Information Flow analysis tool
4. Status: Research prototypes exist for most of the pieces
5. Related on-going investigation of language-based security

Operational Capability:
1. Detect both known and unknown attacks due to implicit and explicit

information flow violations
2. Performance Parameters:

a) Reduce the false positive rate (<20%, SOA >80%)
b) 100% coverage of violations of information flow security policy
c) Minimize annotation burden (<10% of source)
d) Reduce runtime monitor overhead (<2x, SOA 3.6x)

3. Cost of Ownership: The product under this proposal is software. HRL will
pursue the software licensing for commercial use at a standard industrial
royalty rate. The government will have a royalty-free license for its direct
use.

4. Challenges:
a) Improves reliability and resilience by early detection
b) Combines static analysis and runtime monitoring

C
od

e
Su

pp
lie

r
Po

lic
y

Static Info
Flow

Analysis

Static-Dynamic Information Flow Analysis

C
od

e
C

on
su

m
er

s
Po

lic
y

Proof
Checker

Monitor
Inlining

Executable
code

Test
Generator

Tests
covering
security Test/Evaluation/Maintenance

Implementation/Integration

So
ur

ce

co
de

Specification/Design
Feedback

Full Coverage of
Info Flow Bugs

 Minimize
Annotations

Reduce
Runtime

Overhead

Reduce False
Positives Rate

Effort Period of
Performance

Length
months

Applied Research Phase 9/04/12-02/28/14 18
Development Phase 03/01/14-08/31/15 18
Tech Demonstration 06/01/15-08/31/15 3
Total 36

© 2012, HRL Laboratories, LLC All rights reserved.

Thank You
I am happy to take any questions and suggestions

	Slide Number 1
	Tunable Information Flow: Introduction��TTA1: Software Assurance
	Traditional Program Verification
	Slide Number 4
	Applications
	Use Scenarios
	Technical Challenges (1): �Static Verification
	Technical Challenges (2): �Inlined Runtime Monitoring
	Schedule
	Technology Transition Plan
	Slide Number 11
	Thank You

