
Hardware Support for Malware Defense
and End-to-End Trust

Cyber Security Division
2012 Principal Investigators’ Meeting

October 11, 2012

Dimitrios Pendarakis
Research Staff Member and Manager, Secure Systems Group
IBM T.J. Watson Research Center
dimitris@us.ibm.com
914 784-7887

TTA 11 – Hardware-enabled Trust

 Team make-up
 Dimitrios Pendarakis, PI
 Rick Boivie
 Kenneth Goldman
 Eric Hall
 Guerney Hunt
 Mohit Kapur
 David Safford

 Group has a long history of research leadership and transition into

products, standards and open source in areas:
 Operating systems, networking systems, NSFNET
 Network security protocols, network scalability
 Secure co-processors like the IBM 4758, 4764, …
 Trusted Computing and Linux Security
 Secure Processors

Virtualization & Cloud Vulnerabilities/Threats at
the Platform Layer: Larger Attack Surface

Resource sharing
——————————
Single point of failure

Traditional Threats

Virtual sprawl
——————————
Dynamic relocation
——————————
VM stealing

Stealth rootkits
in hardware now
possible
——————————
Supply Chain Issues

—————
Virtual NICs & Virtual
Hardware are targets

Management
Vulnerabilities
——————————
Secure storage of VMs
and the management
DATA
——————————
Requires new
skill sets

New threats to VM
environments

Traditional threats can attack VMs just like
real systems (SQL/Code Injection,
Privileged User, Insider Threat, etc)

Side Channels
Covert Channels
(Timing, Storage)

Sample Threats: Rootkits, Sensors & Actuators

 Security threats in Sensor/Actuator systems: smart grid, oil & gas, transportation, water,
medical devices, smart buildings, …
 Hacker Shows Off Lethal Attack By Controlling Wireless Medical Device

 http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-by-controlling-wireless-medical-device/

~ 150,000 unique rootkits samples per quarter discovered

http://www.us-cert.gov/control_systems/

Source: McAfee Report Q1 2012

http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-by-controlling-wireless-medical-device/
http://www.us-cert.gov/control_systems/

Technical Approach: Problem

 Common observations across all these vulnerabilities/threats/breaches
 Verifying the correctness of large software code bases is hard
 Trusted Computing Base (TCB) is typically large: firmware, OS, hypervisor, etc.
 Increasingly networked devices (e.g., control systems) present additional risks

 Objective: Hardware Support for End-to-End Trust – from low end
embedded devices to cloud servers
 Trust: Confidentiality and integrity of code and sensitive data
 Introduce techniques to compartmentalize (isolate) sensitive applications

 Minimize/reduce TCB
 Perform continuous monitoring for anomaly detection; e2e measurement & attestation

 Challenges
 Cost effective introduction of hardware changes; complexity of continuous monitoring
 Architecture: integration of technologies to achieve trust properties from sensor to

server
 Enhancements in software stacks to take advantage of new capabilities

Secure Blue++ w. On-Chip Context Isolation

Processor Chip External
Memory

CPU Core

•Secure Executable code & data
are in the clear when the CPU is
running the Secure Executable

•With On-Chip Context Isolation

Caches

Crypto

code & data are
encrypted when

off the chip

 Provides fine-grained crypto protection
 Protects confidentiality & integrity of an
application’s information so other S/W
(including OS & malware with root privileges)
can’t read or tamper
 Minimizes Trusted Computing Base (TCB)
 Applications can use OS/Hypervisor services
for I/O, scheduling, paging, interrupts etc.

– Without trusting the OS with sensitive data
– “Use but not trust” - analogous to the way we use
the Internet via https

 Largely application transparent
 New applications can be written or old app’s re-
built for stronger security;
 Limit sensitive data leakage

 Limited H/W changes
 Low performance impact:
 ~0 impact on cache hits, crypto latency impact on
cache misses
 but only for ‘secure applications’
 0 impact for OS & ‘regular apps’

Secure Blue++ & Secure Executables

Secure Executable Components
 Encrypted code & data
 Integrity tree (protects integrity of encrypted code & data)
 Some “startup code” that executes an ‘esm’ instruction

Unprotected region: startup code; ESM
operand; communication buffers

Integrity tree

Encrypted region: code, data, stack, heap

Operand Decrypt ESM
Operand

System Key

External
Memory CPU Crypto

Processor Chip

Secure executable parameters
including encryption key &

encrypted addr range

esm <operand>
<encrypted code>
<more encrypted code>
<more encrypted code>
 . . .

 Other S/W cannot decrypt the operand and get keys
 Other S/W cannot use the operand with other code

Encrypted with public key part of
the System Key. Decrypted w.
private key part of System Key

Execution of ESM Instruction
 ESM Enters Secure Mode & loads crypto keys
 Keys are not “in the clear” in ESM instructions
 Keys protected by “system key” not available to S/W

SecureBlue++ Challenges
 Does not guarantee correctness of the “secure executable”; just protects it from ‘other software’
 Does not protect against abuse of authenticated access; can be combined w. stronger authentication methods
 Adds some complexity to the S/W build / debug / mgmt and deployment lifecycle; can integrate w. dev. tools

On-Chip Context Isolation

 Adds on-chip isolation to off-chip
cryptographic isolation provided by
SecureBlue++

 State in the CPU is tagged with a process ID.
 Each Process is assigned a unique save area
 A process never sees state from a different

process without explicit permission.
 Auto state save prevents access to another

processes context.
 Cross context calls explicitly identify which

registers are passed as parameters (both input
and output).

 Contexts are reentrant
 Specialized stack to enable interruptible

context.
 Changes are “backward compatible” for existing

kernels/OSes.

Save Area

Context
Support

Context N

Context 1

Context 2

Secure
isolation

...

Future
Processor

Memory

End-to-end protection of sensitive information w.
Secure Blue++ w. On-Chip Context Isolation

Secure Executables

Server Process Server

Secure
Executable

Some
Process

Strong Crypto Isolation/Protection

 Keys & data always protected
 Private keys can’t be stolen
 Certificates & public keys can’t be

tampered with

Strong Crypto Isolation/Protection here

Today

Example Trusted Mobile Platform Architecture

ARM Processor w. TrustZone Technology

Kernel

Android

Trusted
Context with

swTPM

PTS

IMA EVM
TPMDD

Dalvik

Base
Apps
VM

Mgmt

Kernel

PTS

IMA, VM
TPMDD

Android
Guest

Dalvik

vTIS
vBIOS
vTPM

QEMU

Kernel ... Kernel

PTS

IMA, VM
TPMDD

Android
Guest

Dalvik

vTIS
vBIOS
vTPM

QEMU

Kernel

Phone “Personality A”
(personal)

Phone “Personality B”
(enterprise)

Integrity Monitoring
& Analytics Trends

• Mobile platforms are full-fledged
computers
• Bring-your-own-device (BYOD)
• Multi-personality devices
(personal & corporate use)
• Simultaneous operation of
potentially hostile applications
• Increase in mobile malware

Approach
• Apply trusted virtualized
architecture
• Provide similar trust properties as
server platforms
• Isolate different “personalities”
• Continuous integrity monitoring
and analysis

“Trust Dust”

• Leverages a hardware root of trust for low-end sensors and actuators in a scalable,
distributed management architecture

• Continually tracks device state, identifies potentially compromised nodes & remediates violations
• Protects integrity of sensor and actuators in the “wild”; applicable to multiple IoT scenarios
• Challenges: cost effectiveness, scalability, integration w. security management tools

Deliverables & Milestones

End-to-End
Architecture

SecureBlue++ w.
On-Chip Context

Isolation

Year 1 Year 2 Year 3

Trusted Mobile &
Sensor/Actuator

Platform

Software stack
exploiting

architecture

Report on Overall
Architecture

Secure Sensor &
Actuator Design

Trusted Mobile
Platform Design

Architectural
simulation

FPGA Emulation
of Architecture

Final Project
Report

Design Software
Build Process

Define Tools
for Cloud
Deployment

Secure Sensor
Stack Demo

Plan Demo
Scenario

Final
Demonstration

Prototype of
Trusted Mobile
Platform

Milestones Deliverables

Technology Transition Plan

 Investigate potential use of DETER testbed to evaluate the
effectiveness of the architecture

 Publish proposed architecture
 Contributions to open source community
 Pursue commercialization within IBM
 Explore licensing or sale of selective technologies

Concept Graphic:

Proposed Technical Approach:
1. Create tamper resistant isolation with cryptographic

confidentiality and integrity guarantees. Integrated hardware
virtualized TPM provides end-to-end DRTM..

2. Tasks: Integrate and extend existing component technology
simulations. Design/port hypervisor/linux for platform. Test
resultant system for security and performance.

3. Status: Components exist at different levels (shipping,
prototyped, simulated, designed).

4. IBM has already designed and simulated several isolation
mechanisms, and demonstrated trusted sensors.

5. IBM has been leading the Linux implementation of Trusted
Computing, and integrating the necessary hardware in
products.

Schedule, Cost, Deliverables, & Contact Info:
Period of performance, Milestones and total costs:
 Total Period 3 years
 Milestones:

• Year 1: Design and prototype system architecture by
merging component technologies

• Year 2: SW Modifications for new hardware
• Year 3: test security and performance of system

Deliverables: Prototype trusted endpoint, simulation of end to
end architecture, test results using system and application
software

Corporate Information: IBM
 POC Dimitrios Pendarakis, Yorktown Heights, NY, 10532,

phone (914) 784-7887, email dimitris@us.ibm.com

Operational Capability
• Hardware Enabled Trust

• Hardware to thwart attacks, untrusted cloud provider,
and to protect sensors in the wild.

• Hardware measure/attested context for end to end
trust from cloud to sensors

• Low CPU performance Impact
• Minimal impact on cost
• Addresses TTA-11

• End-to-end trust with hardware rooted measurements
• Enabling Hardware to thwart attacks with hardware

isolated context with protection from HW and SW
attacks

Hardware
Virtual
TPM

Context N

Context 1

Hardware
cryptoContext 2

Secure
isolation

Indivually cryptographically protected code/
data

...

Future
Processor

Storage/Memory

End-to-End
Trust

Trust for
Sensors,

Actuator, and
Mobile
devices

Scalable
trust

anchor

BAA Number: Cyber Security BAA 11-02 Offeror Name: IBM
Title: Hardware Support for Malware Defense and End-to-End Trust

	Slide Number 1
	TTA 11 – Hardware-enabled Trust
	Virtualization & Cloud Vulnerabilities/Threats at the Platform Layer: Larger Attack Surface
	Sample Threats: Rootkits, Sensors & Actuators
	Technical Approach: Problem
	Secure Blue++ w. On-Chip Context Isolation
	Secure Blue++ & Secure Executables
	On-Chip Context Isolation
	Slide Number 9
	Example Trusted Mobile Platform Architecture
	“Trust Dust”
	Deliverables & Milestones
	Technology Transition Plan
	BAA Number: Cyber Security BAA 11-02 Offeror Name: IBM�Title: Hardware Support for Malware Defense and End-to-End Trust

