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TTA 11 – Hardware-enabled Trust 
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 Group has a long history of research leadership and transition into 

products, standards and open source in areas: 
 Operating systems, networking systems, NSFNET  
 Network security protocols, network scalability 
 Secure co-processors like the IBM 4758, 4764, … 
 Trusted Computing and Linux Security 
 Secure Processors 



Virtualization & Cloud Vulnerabilities/Threats at 
the Platform Layer: Larger Attack Surface  
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Sample Threats: Rootkits, Sensors & Actuators 

 Security threats in Sensor/Actuator systems: smart grid, oil & gas, transportation, water, 
medical devices, smart buildings, …  
 Hacker Shows Off Lethal Attack By Controlling Wireless Medical Device 

 http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-by-controlling-wireless-medical-device/ 

~ 150,000 unique rootkits samples per quarter discovered 

http://www.us-cert.gov/control_systems/ 

Source: McAfee Report Q1 2012 

http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-by-controlling-wireless-medical-device/
http://www.us-cert.gov/control_systems/


Technical Approach: Problem 

 Common observations across all these vulnerabilities/threats/breaches 
 Verifying the correctness of large software code bases is hard 
 Trusted Computing Base (TCB) is typically large: firmware, OS, hypervisor, etc. 
 Increasingly networked devices (e.g., control systems) present additional risks 

 Objective: Hardware Support for End-to-End Trust – from low end 
embedded devices to cloud servers 
 Trust: Confidentiality and integrity of code and sensitive data 
 Introduce techniques to compartmentalize (isolate) sensitive applications 

 Minimize/reduce TCB 
 Perform continuous monitoring for anomaly detection; e2e measurement & attestation 

 Challenges  
 Cost effective introduction of hardware changes; complexity of continuous monitoring 
 Architecture: integration of technologies to achieve trust properties from sensor to 

server 
 Enhancements in software stacks to take advantage of new capabilities 



Secure Blue++ w. On-Chip Context Isolation 

Processor Chip External 
Memory 

CPU Core 

•Secure Executable code & data 
are in the clear when the CPU is 
running the Secure Executable 

•With On-Chip Context Isolation 

Caches 

Crypto 

code & data are 
encrypted when 

off the chip 

 Provides fine-grained crypto protection 
 Protects confidentiality & integrity of an 
application’s information so other S/W 
(including OS & malware with root privileges) 
can’t read or tamper 
 Minimizes Trusted Computing Base (TCB)  
 Applications can use OS/Hypervisor services 
for I/O, scheduling, paging, interrupts etc. 

– Without trusting the OS with sensitive data 
– “Use but not trust” - analogous to the way we use 
the Internet via https 

 Largely application transparent 
 New applications can be written or old app’s re-
built for stronger security;  
 Limit sensitive data leakage 

 Limited H/W changes 
 Low performance impact: 
 ~0 impact on cache hits, crypto latency impact on 
cache misses 
 but only for ‘secure applications’ 
 0 impact for OS & ‘regular apps’ 



Secure Blue++ & Secure Executables 

Secure Executable Components 
 Encrypted code & data 
 Integrity tree (protects integrity of encrypted code & data) 
 Some “startup code” that executes an ‘esm’ instruction 

Unprotected region: startup code; ESM 
operand; communication buffers 

Integrity tree 

Encrypted region: code, data, stack, heap 

Operand Decrypt ESM 
Operand 

System Key 

External 
Memory CPU Crypto 

Processor Chip 

Secure executable parameters 
including encryption key & 

encrypted addr range 

esm <operand> 
<encrypted code> 
<more encrypted code> 
<more encrypted code> 
     . . . 

 Other S/W cannot decrypt the operand and get keys 
 Other S/W cannot use the operand with other code 

Encrypted with public key part of 
the System Key. Decrypted w. 
private key part of System Key 

Execution of ESM Instruction 
 ESM Enters Secure Mode & loads crypto keys 
 Keys are not “in the clear” in ESM instructions 
 Keys protected by “system key” not available to S/W 

SecureBlue++ Challenges 
 Does not guarantee correctness of the “secure executable”; just protects it from ‘other software’ 
 Does not protect against abuse of authenticated access; can be combined w. stronger authentication methods 
 Adds some complexity to the S/W build / debug / mgmt and deployment lifecycle; can integrate w. dev. tools 



On-Chip Context Isolation 

   Adds on-chip isolation to off-chip 
cryptographic isolation provided by 
SecureBlue++ 

 State in the CPU is tagged with a process ID. 
 Each Process is assigned a unique save area 
 A process never sees state from a different 

process without explicit permission. 
 Auto state save prevents access to another 

processes context. 
 Cross context calls explicitly identify which 

registers are passed as parameters (both input 
and output). 

 Contexts are reentrant 
 Specialized stack to enable interruptible 

context. 
 Changes are “backward compatible” for existing 

kernels/OSes. 
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End-to-end protection of sensitive information w. 
Secure Blue++ w. On-Chip Context Isolation 

Secure Executables 

Server Process Server 

Secure 
Executable 

Some 
Process 

Strong Crypto Isolation/Protection 

 Keys & data always protected 
 Private keys can’t be stolen 
 Certificates & public keys can’t be 

tampered with 

Strong Crypto Isolation/Protection here 

Today 



Example Trusted Mobile Platform Architecture 
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Integrity Monitoring 
& Analytics Trends 

• Mobile platforms are full-fledged 
computers 
• Bring-your-own-device (BYOD)  
• Multi-personality devices 
(personal & corporate use) 
• Simultaneous operation of 
potentially hostile applications 
• Increase in mobile malware 

Approach 
• Apply trusted virtualized 
architecture  
• Provide similar trust properties as 
server platforms 
• Isolate different “personalities” 
• Continuous integrity monitoring 
and analysis 



“Trust Dust” 

• Leverages a hardware root of trust for low-end sensors and actuators in a scalable, 
distributed management architecture  

• Continually tracks device state, identifies potentially compromised nodes & remediates violations 
• Protects integrity of sensor and actuators in the “wild”; applicable to multiple IoT scenarios 
• Challenges: cost effectiveness, scalability, integration w. security management tools 



Deliverables & Milestones 
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Technology Transition Plan 

 Investigate potential use of DETER testbed to evaluate the 
effectiveness of the architecture 

 Publish proposed architecture 
 Contributions to open source community 
 Pursue commercialization within IBM 
 Explore licensing or sale of selective technologies 

 



Concept Graphic:  

Proposed Technical Approach:  
1. Create tamper resistant isolation with cryptographic 

confidentiality and integrity guarantees. Integrated hardware 
virtualized TPM provides end-to-end DRTM.. 

2. Tasks: Integrate and extend existing component technology 
simulations. Design/port hypervisor/linux for platform. Test 
resultant system for security and performance. 

3. Status: Components exist at different levels (shipping, 
prototyped, simulated, designed). 

4. IBM has already designed and simulated several isolation 
mechanisms, and demonstrated trusted sensors. 

5. IBM has been leading the Linux implementation of Trusted 
Computing, and integrating the necessary hardware in 
products. 

Schedule, Cost, Deliverables, & Contact Info:  
Period of performance, Milestones and total costs: 
     Total Period 3 years 
     Milestones:  

• Year 1:  Design and prototype system architecture by 
merging component technologies 

• Year 2: SW Modifications for new hardware 
• Year 3: test security and performance of system 

Deliverables: Prototype trusted endpoint, simulation of end to 
end architecture, test results using system and application 
software 

Corporate Information: IBM 
     POC Dimitrios Pendarakis, Yorktown Heights,  NY, 10532, 

phone (914) 784-7887, email dimitris@us.ibm.com 

Operational Capability 
• Hardware Enabled Trust 

•  Hardware to thwart attacks, untrusted cloud provider, 
and to protect sensors in the wild. 

•  Hardware measure/attested context for end to end 
trust from cloud to sensors 

• Low CPU performance Impact 
• Minimal impact on cost 
• Addresses TTA-11  

•  End-to-end trust with hardware rooted measurements 
•  Enabling Hardware to thwart attacks with hardware 

isolated context with protection from HW and SW 
attacks 
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